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1 Introduction

Most broadly, I am interested in finding efficient combinatorial algorithms
to compute information about toplogical and geometric spaces using finite
descriptions. Since we live in an era of ubiquitous, powerful computers,
questions about the computational aspects of geometry and topology are
of fundamental interest. What information about a shape can we actually
compute and therefore access and understand?

I am particularly interested in computing invariants and properties of low
dimensional objects, particularly surfaces and 3-manifolds. These beautiful
objects have the virtue of being the most picturable, and many interesting
questions about them remain. My thesis is the first stage of a program to
find a new combinatorial description and method for computing an important
invariant of 3-manifolds called Heegaard Floer homology.

2 Heegaard Floer Homology

Heegaard Floer homology is an invariant of closed, orientable 3-manifolds
defined by Ozsvath and Szabo in [1], defined using decompositions of 3-
manifolds called Heegaard diagrams. Every closed, orientable 3-manifold M
admits a Heegaard splitting: a representation of M as two handlebodies with
homeomorphic boundary surfaces, and a choice of homeomorphism between
the two boundary surfaces. A Heegaard diagram is a way of specifying a
Heegaard splitting. It is a closed surface H of genus g marked with 2g closed
curves, g of which are colored red and g of which are colored black. These

1



are the attaching circles for the two handlebodies which join to make the
3-manifold M .

One way of constructing Heegaard Floer homolgy is to take the g-fold
symmetric product of H with itself: that is, the space of unordered g-tuples
of points in H. The red and black attaching circles generate corresponding
red and black tori in the symmetric product Symg(H). The chain groups are
generated by g-tuples of intersection points of red attaching circles with black
ones. The boundary map is then computed by giving a complex structure to
H, which then induces one on Symg(H).

In order to compute the Heegaard Floer boundary map, one counts the
number of holomorphic representatives, up to a natural equivalence, of the
following kind of homotopy class of maps. Let B be a bigon: that is, the
unit disk in the complex plane with 2 marked points a and b which are
the endpoints of a diameter. Call B a Whitney disk connecting g-tuples of
intersection points x and y in Symg(H) if B comes with a map f such that
f(a) = x, f(b) = y, and f sends one arc on the boundary of B between a and
b to the red torus in Symg(H), and the other arc between a and b to the black
torus. Under the right transversality and dimensionality conditions, the set
of holormorphic representatives of a Whitney disk connecting x and y is
finite. The boundary map of a chain x is computed by taking a sum over all
chains y weighted by the number of holomorphic Whitney disks connecting
x to y.

Whitney disks can be represented purely in terms of maps between sur-
faces. A lemma due to Oszvath and Szabo states that every holomorphic
Whitney disk can be represented as a pair of maps from a Riemann surface
with boundary D̂. The boundary of D̂ is marked with 2g vertices. Call
the set of these vertices V . The components of ∂Σ\V are 2-colored red and
black. One map is a degree-g holomorphic branched cover of the bigon B
which respects the 2-coloring. The other is a holomorphic map φ : D̂ → H
which sends components of ∂Σ\V to paths along attaching circles of the cor-
responding color, and which sends vertices to intersection points of attaching
circles.

This formulation of a Whitney disk is the one I plan to use in order to
build a new combinatorial description of Heegaard Floer Homology. Such
a map as φ is determined up to homotopy by where it sends ∂D̂. φ may
double back on a component of ∂Σ\V . For each doubling back of this kind,
we obtain a 1 parameter family of Whitney disks by varying the point where
the image turns back on the attaching circle. The k-parameter set of Whitney
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disks generated by k doublings back is called a moving family.
Suppose D̂ has n boundary components. Counting the holomorphic rep-

resentatives of a homotopy class of Whitney disks amounts to counting the
intersection number of a moving family of dimension 2g + n − 1 with the
set of holomorphic Whitney disks. That set has codimension 2g + n − 1 in
the space of all Whitney disks, so when the right transversality conditions
are met we expect the resulting intersection number to be finite. For this
to work, one needs that the set of holmorphic Whitney disks sits within the
space of Whitney disks much like an embedded submanifold does inside its
ambient manifold. Ozsvath and Szabo prove this in [1].

3 Arc Diagrams and Degeneration

In order to make a new description of Heegaard Floer homology, I study
a class of embedded graphs on surfaces with boundary, called weighted arc
diagrams. These are graphs with 2-colored vertices located on the boundary
of the surface in which they are embedded, and with nonnegative real wights
assigned to each edge. The edges embed into the surface as homotopy classes
(rel vertices) of paths connecting vertices which are mutually disjoint in the
interior.

A toplogical branched covering map between surfaces S and S ′ defines a
map from arc diagrams on S ′ to arc diagrams on S via path lifting. Weighted
arc diagrams behave, in some contexts, much like a complex structure does.
In fact, they represent what my advisor, Jeremy Kahn, and I call a deg-
nenerate complex structure. A degenerate complex structure is a kind of
generalization of a surface equipped with a quadratic differential. It is a
structure which pulls back under branched covering maps, and can, on a
surface with boundary, be represented by a weighted arc diagram.

To see how a quadratic differential on a surface Σ with boundary cor-
responds to a weighted arc diagram, first represent the quaratic differential
with a measured foliation F . By marking arcs on the boundary of Σ, we
can compute the extremal length of the set of leaves of the foliation con-
necting marked arcs on the boundary of Σ. By replacing that whole family
of leaves with a single arc and weighting that arc with the extremal length
of those leaves, one can construct a weighted arc diagram from a quadratic
differential.

One can take this notion further and, true to its name, use a quadratic dif-
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ferential to represent a degenerating path of complex structures. A quadratic
differential on a surface Σ with boundary marks a geodesic in the Teichmüller
space of Σ through contracting along the horizontal leaves of the foliation.
By taking the projectivized limit of the extremal lengths of path families
connecting boundary arcs, we obtain a limiting arc diagram which can be
regarded as the degenerate complex structure of that surface.

I hope to replace the complex structure required in the original definition
of a Whitney disk with a degnerate complex structure encoded by an arc
diagram. Instead of putting a complex structure on the Heegaard surface
H and pulling it back under a moving family of maps to the surface with
red-black marked boundary Σ, we can instead put a quadratic differential
on H. We can pull back the quadratic differential under each member of
the moving family. We can then degenerate along the horizontal foliation of
the quadratic differential and, taking the projective limit of extremal lengths
of path families connecting labeled arcs, translate that quadratic differential
into a weighted arc diagrams with 2-colored vertices. Arc diagrams are easy
to work with from a computation standpoint, and this approach has the
potential advantage of avoiding the messy perturbation theory required in
the original formulation of Heegaard Floer homology.

The set of arc diagrams on a given surface Σ with n marked points on
its boundary carries the structure of a finite dimenional simplicial complex,
called the arc complex A(Σ) of Σ. Each arc on Σ is a vertex of A(Σ). A set
of vertices span a simplex if we can choose representative paths which don’t
cross in the interior of Σ. If Σ has Euler characteristic χ(Σ), then at most
N = n − 3χ(Σ) arcs can be mutually disjoint on Σ, so the top dimensional
cells of the arc complex have dimension N .

A projective weighted arc diagram is one with its weights normalized to
sum to 1. A projective wighted arc diagram can be represented by a point
in barycentric coordinates on a simplex of A(Σ). A(Σ) geometrized by tak-
ing barycentric coordinates on each vertex is therefore called the projective
weighted arc complex PWA(Σ).

In my thesis I studied membership in the set of projective weighted arc
diagrams realizable by lifting a projective weighted arc diagram on a bigon,
which we call the perfect locus P . Membership in P is decidable. For maxi-
mal diagrams, that is, arc diagrams which cannot be contained in a larger arc
diagram, I constructed an alogrithm which decides membership and proved
that it is complete and correct. This algorithm is efficient and computa-
tionally tractable. I am still studying the computational complexity of the
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general membership problem for a non-maximal diagram.
The next stage in this program is to understand how P fits inside PWA(Σ).

P is a simplicial complex embedded inside PWA(Σ). Its dimension is
NP = n/2 − χ(Σ). We believe that P embeds into PWA similarly to the
way a submanifold embeds inside a manifold. Concretely, we conjecture that
the cohomology group HN−NP (PWA,PWA\P) = Z.

If that conjecture holds, then I could potentially construct a generator π
ofHN−NP (PWA,PWA\P) which would compute the intersection number of
P with a simplex of PWA. In that case, much of the machinery in Heegaard
Floer homology can be adapted to this new, degenerate setting. Instead of
endowing the Heegaard surface with a complex structure, one could instead
endow it with a quadratic differential. That quadratic differential would,
through pulling back under the maps of a moving family of dimension N−NP
and then degenerating, yield a chain S in PWA of dimension N−NP Whose
boundary would generically lie in PWA\P . Its intersection number with P
could then be computed using π(S). This would effectively count the number
of holomorphic degenerate Whitney disks.

By thinking of arc diagrams as degenerate complex structures, the com-
plex of projective weighted arc diagrams on a surface and the perfect locus
inside it are very close analogs of the space of Whitney disks and its subset
of holomorphic representatives. This is what motivates the conjecture that
HN−NP (PWA,PWA\P) = Z. It would be of its own independent interest
if this conjecture bears out.

The final stage of the program would be to do this adaptation and,
hopefully, obtain a procedure implementable on a computer to compute the
Heegaard Floer homology of closed oriented 3-manifold using operations on
weighted arc diagrams. That membership in P is computable, efficiently so
in the maximal case, is a promising sign. The current phase of the program
is now to prove the conjecture, and come to grips with how the set of perfect
diagrams fits inside the projective weighted arc complex.
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